Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Saudi Pharm J ; 32(1): 101911, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38226346

RESUMEN

In recent years, there has been a focus on developing and discovering novel Bruton's tyrosine kinase (BTK) inhibitors, as they offer an effective treatment strategy for B-cell malignancies. BTK plays a crucial role in B cell receptor (BCR)-mediated activation and proliferation by regulating downstream factors such as the NF-κB and MAP kinase pathways. To address this challenge and propose potential therapeutic options for B-cell lymphomas, researchers conducted 2D-QSAR and ADMET studies on pyrrolopyrimidine derivatives that act as inhibitors of the BCR site in cytochrome b. These studies aim to improve and identify new compounds that could serve as more potent potential BTK inhibitors, which would lead to the identification of new drug candidates in this field. In our study, we used 2D-QSAR (multiple linear regression, multiple nonlinear regression, and artificial neural networks), molecular docking, molecular dynamics, and ADMET properties to investigate the potential of 35 pyrrolopyrimidine derivatives as BTK inhibitors. A molecular docking study and molecular dynamics simulations of molecule 13 over 10 ns revealed that it establishes multiple hydrogen bonds with several residues and exhibits frequent stability throughout the simulation period. Based on the results obtained by molecular modeling, we proposed six new compounds (Pred1, Pred2, Pred3, Pred4, Pred5, and Pred6) with highly significant predicted activity by MLR models. A study based on the in silico evaluation of the predicted ADMET properties of the new candidate molecules is strongly recommended to classify these molecules as promising candidates for new anticancer agents specifically designed to target Bruton's tyrosine kinase (BTK) inhibition.

2.
Anticancer Drugs ; 35(2): 117-128, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018861

RESUMEN

Modeling the structural properties of novel morpholine-bearing 1, 5-diaryl-diazole derivatives as potent COX-2 inhibitor, two proposed models based on CoMFA and CoMSIA were evaluated by external and internal validation methods. Partial least squares analysis produced statistically significant models with Q 2 values of 0.668 and 0.652 for CoMFA and CoMSIA, respectively, and also a significant non-validated correlation coefficient R² with values of 0.882 and 0.878 for CoMFA and CoMSIA, respectively. Both models met the requirements of Golbraikh and Tropsha, which means that both models are consistent with all validation techniques. Analysis of the CoMFA and CoMSIA contribution maps and molecular docking revealed that the R1 substituent has a very significant effect on their biological activity. The most active molecules were evaluated for their thermodynamic stability by performing MD simulations for 100 ns; it was revealed that the designed macromolecular ligand complex with 3LN1 protein exhibits a high degree of structural and conformational stability. Based on these results, we predicted newly designed compounds, which have acceptable oral bioavailability properties and would have high synthetic accessibility.


Asunto(s)
Antineoplásicos , Inhibidores de la Ciclooxigenasa 2 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de la Ciclooxigenasa 2/farmacología , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Disponibilidad Biológica , Antineoplásicos/farmacología
3.
J Biomol Struct Dyn ; : 1-15, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428078

RESUMEN

GluN2B-induced activation of NMDA receptors plays a key function in central nervous system (CNS) disorders, including Parkinson, Alzheimer, and stroke, as it is strongly involved in excitotoxicity, which makes selective NMDA receptor antagonists one of the potential therapeutic agents for the treatment of neurodegenerative diseases, especially stroke. The present study aims to examine a structural family of thirty brain-penetrating GluN2B N-methyl-D-aspartate (NMDA) receptor antagonists, using virtual computer-assisted drug design (CADD) to discover highly candidate drugs for ischemic strokes. Initially, the physicochemical and ADMET pharmacokinetic properties confirmed that C13 and C22 compounds were predicted as non-toxic inhibitors of CYP2D6 and CYP3A4 cytochromes, with human intestinal absorption (HIA) exceeding 90%, and designed to be as efficient central nervous system (CNS) agents due to the highest probability to cross the blood-brain barrier (BBB). Compared to ifenprodil, a co-crystallized ligand complexed with the transport protein encoded as 3QEL.pdb, we have noticed that C13 and C22 chemical compounds were defined by good ADME-Toxicity profiles, meeting Lipinski, Veber, Egan, Ghose, and Muegge rules. The molecular docking results indicated that C22 and C13 ligands react specifically with the amino acid residues of the NMDA receptor subunit GluN1 and GluN2B. These intermolecular interactions produced between the candidate drugs and the targeted protein in the B chain remain stable over 200 nanoseconds of molecular dynamics simulation time. In conclusion, C22 and C13 ligands are highly recommended as anti-stroke therapeutic drugs due to their safety and molecular stability towards NMDA receptors.Communicated by Ramaswamy H. Sarma.

4.
Life (Basel) ; 13(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36676076

RESUMEN

Overexpression of polo-like kinase 1 (PLK1) has been found in many different types of cancers. With its essential role in cell proliferation, PLK1 has been determined to be a broad-spectrum anti-cancer target. In this study, 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations were applied on a series of novel pteridinone derivatives as PLK1 inhibitors to discover anti-cancer drug candidates. In this work, three models­CoMFA (Q² = 0.67, R² = 0.992), CoMSIA/SHE (Q² = 0.69, R² = 0.974), and CoMSIA/SEAH (Q² = 0.66, R² = 0.975)­of pteridinone derivatives were established. The three models that were established gave Rpred2 = 0.683, Rpred 2= 0.758, and Rpred 2= 0.767, respectively. Thus, the predictive abilities of the three proposed models were successfully evaluated. The relations between the different champs and activities were well-demonstrated by the contour chart of the CoMFA and CoMSIA/SEAH models. The results of molecular docking indicated that residues R136, R57, Y133, L69, L82, and Y139 were the active sites of the PLK1 protein (PDB code: 2RKU), in which the more active ligands can inhibit the enzyme of PLK1. The results of the molecular dynamic MD simulation diagram were obtained to reinforce the previous molecular docking results, which showed that both inhibitors remained stable in the active sites of the PLK1 protein (PDB code: 2RKU) for 50 ns. Finally, a check of the ADME-Tox properties of the two most active molecules showed that molecular N° 28 could represent a good drug candidate for the therapy of prostate cancer diseases.

5.
J Biomol Struct Dyn ; 41(21): 11657-11670, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36695085

RESUMEN

Tropomyosin receptor kinase (TRK) enzymes are responsible for different types of tumors caused by neurotrophic tyrosine receptor kinase gene fusion and have been identified as an effective target for anticancer therapy. The study of the mechanism between polo-like kinase (PLKs) and pyrazol inhibitors was performed using 3D-QSAR modeling, molecular docking, and MD simulations in order to design high-activity inhibitors. The HQSAR (Q2 = 0.793, R2 = 0.917, R2ext = 0.961), CoMFA (Q2 = 0.582, R2 = 0.722, R2ext = 0.951), CoMSIA/SE (Q2 = 0.603, R2 = 0.801, R2ext = 0.849), and Topomer CoMFA (Q2 = 0.726, R2 = 0.992, R2ext = 0.717) showed good reliability and predictability. All models have been successfully tested by external validation, so all five established models are reliable. The analysis of the different contour maps of different models gives structural information to improve the inhibitory function. Molecular docking results show that the amino acids Met 592, GLU 590, LEU 657, VAL 524, and PHE 589 are the active sites of the tropomyosin receptor TRKs. The results obtained by MD showed that compound 19i could form a more stable complex protein (PDB id: 5KVT). Based on these results, we developed new compounds and their expected inhibitory activities. The results of physicochemical and ADME-Tox properties showed that the four proposed molecules are orally bioavailable, and they are not toxic in the Ames test. Thus, these results would provide modeling information that could help experimental researchers find TRK type I inhibitors more efficiently.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados , Tropomiosina , Antineoplásicos/farmacología
6.
Pharmaceuticals (Basel) ; 15(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35745588

RESUMEN

Forty-four bicyclo ((aryl) methyl) benzamides, acting as glycine transporter type 1 (GlyT1) inhibitors, are developed using molecular modeling techniques. QSAR models generated by multiple linear and non-linear regressions affirm that the biological inhibitory activity against the schizophrenia disease is strongly and significantly correlated with physicochemical, geometrical and topological descriptors, in particular: Hydrogen bond donor, polarizability, surface tension, stretch and torsion energies and topological diameter. According to in silico ADMET properties, the most active ligands (L6, L9, L30, L31 and L37) are the molecules having the highest probability of penetrating the central nervous system (CNS), but the molecule 32 has the highest probability of being absorbed by the gastrointestinal tract. Molecular docking results indicate that Tyr124, Phe43, Phe325, Asp46, Phe319 and Val120 amino acids are the active sites of the dopamine transporter (DAT) membrane protein, in which the most active ligands can inhibit the glycine transporter type 1 (GlyT1). The results of molecular dynamics (MD) simulation revealed that all five inhibitors remained stable in the active sites of the DAT protein during 100 ns, demonstrating their promising role as candidate drugs for the treatment of schizophrenia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...